Abstract
Person re-identification is significant but a challenging task in the computer visual retrieval, which has a wide range of application prospects. Background clutters, arbitrary human pose, and uncontrollable camera angle will greatly hinder person re-identification research. In order to extract more discerning person features, a network architecture based on multi-division attention is proposed in this paper. The network can learn the robust and dis-criminative person feature representation from the global image and different local images simultaneously, which can effectively improve the recognition of person re-identification tasks. In addition, a novel dual local attention network is designed in the local branch, which is composed of spatial attention and channel attention and can optimize the extraction of local features. Experimental results show that the mean average precision of the network on the Market-1501, DukeMTMC-reID, and CUHK03 datasets reaches 82.94%, 72.17%, and 71.76%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.