Abstract
Person re-identification aims to match the images of pedestrians across different camera views from different locations. This is a challenging intelligent video surveillance problem that remains an active area of research due to the need for performance improvement. Person re-identification involves two main steps: feature representation and metric learning. Although the keep it simple and straightforward (KISS) metric learning method for discriminative distance metric learning has been shown to be effective for the person re-identification, the estimation of the inverse of a covariance matrix is unstable and indeed may not exist when the training set is small, resulting in poor performance. Here, we present dual-regularized KISS (DR-KISS) metric learning. By regularizing the two covariance matrices, DR-KISS improves on KISS by reducing overestimation of large eigenvalues of the two estimated covariance matrices and, in doing so, guarantees that the covariance matrix is irreversible. Furthermore, we provide theoretical analyses for supporting the motivations. Specifically, we first prove why the regularization is necessary. Then, we prove that the proposed method is robust for generalization. We conduct extensive experiments on three challenging person re-identification datasets, VIPeR, GRID, and CUHK 01, and show that DR-KISS achieves new state-of-the-art performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.