Abstract

Facial expression recognition has been addressed mainly working on 2D images or videos. In this paper, the problem of person-independent facial expression recognition is addressed on 3D shapes. To this end, an original approach is proposed that relies on selecting the minimal-redundancy maximal-relevance features derived from a pool of SIFT feature descriptors computed in correspondence with facial landmarks of depth images. Training a Support Vector Machine for every basic facial expression to be recognized, and combining them to form a multiclass classifier, an average recognition rate of 77.5% on the BU-3DFE database has been obtained. Comparison with competitors approaches using a common experimental setting on the BU-3DFE database, shows that our solution is able to obtain state of the art results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.