Abstract

This letter presents a method for person identification based on sit-to-stand and stand-to-sit movements using micro-Doppler radar measurements and a convolutional neural network (CNN). Two 24-GHz micro-Doppler radar systems placed directly above or behind participants will be used to measure the sit-to-stand and stand-to-sit movements of 10 participants. Images of the micro-Doppler signatures will be generated by subjecting the signals received by the radar to short-time Fourier transform. The generated images will then be used as input for the CNNs for training and evaluation purposes. The experiments verified the ability of the method to accurately identify people by measuring both their sit-to-stand and stand-to-sit movements. The identification accuracies for the sit-to-stand and stand-to-sit measurements were 93.6% and 94.9%, respectively, using the data of the radar placed above the participant, whereas the accuracy when placing the radar behind the participant was 92.9% for the sit-to-stand and 93.9% for the stand-to-sit movements. The obtained results will prove that both the horizontal and vertical directions of the velocities of both movements include information that can be used to identify individuals, and this information can be obtained with micro-Doppler radar systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call