Abstract

A knot $\kappa$ in $S^3$ is persistently foliar if, for each non-trivial boundary slope, there is a co-oriented taut foliation meeting the boundary of the knot complement transversely in a foliation by curves of that slope. For rational slopes, these foliations may be capped off by disks to obtain a co-oriented taut foliation in every manifold obtained by non-trivial Dehn surgery on that knot. We show that any composite knot with a persistently foliar summand is persistently foliar and that any nontrivial connected sum of fibered knots is persistently foliar. As an application, it follows that any composite knot in which each of two summands is fibered or at least one summand is nontorus alternating or Montesinos is persistently foliar. We note that, in constructing foliations in the complements of fibered summands, we build branched surfaces whose complementary regions agree with those of Gabai's product disk decompositions, except for the one containing the boundary of the knot complement. It is this boundary region which provides for persistence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.