Abstract
Persistent weak temperature stratification characterizes the epilimnion of Lake Opeongo, Ontario, Canada, and reduces the magnitude of turbulent mixing. Throughout July and August 2009, the epilimnion was isothermal for only 34 % of the record, while for 28 % of the record there was at least a 2 °C temperature difference across the 5 m deep epilimnion. During these stratified periods, there were increases in gradient Richardson numbers (Rig), and decreases in rates of dissipation of turbulent kinetic energy (\(\varepsilon\)), the turbulence activity parameter (I = e/νN2), an indicator of active mixing, and vertical eddy diffusivity (Kz) inferred from temperature microstructure profiles. During periods of shear induced mixing, values of e approached 10−6 m2 s−3 and decreased during periods of increasing Rig. For 0 1, average values of I were ~300 and Kz was reduced by one to three orders of magnitude. Mixing during cold fronts occurred over time scales of minutes to hours, which worked to erode diurnal thermoclines. However, during periods of persistent secondary thermoclines, mixing was suppressed throughout the epilimnion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.