Abstract
Urban surface and near-surface air temperatures are known to be often higher than their rural counterparts, a phenomenon now labeled as the urban heat island effect. However, whether the elevated urban temperatures are more persistent than rural temperatures at timescales commensurate to heat waves has not been addressed despite its importance for human health. Combining numerical simulations by a global climate model with a surface energy balance theory, it is demonstrated here that urban surface and near-surface air temperatures are significantly more persistent than their rural counterparts in cities dominated by impervious materials with large thermal inertia. Further use of these materials will result in even stronger urban temperature persistence, especially for tropical cities. The present findings help pinpoint mitigation strategies that can simultaneously ameliorate the larger magnitude and stronger persistence of urban temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.