Abstract

The persistent spectral hole-burning properties of R' color centers in pure and doped LiF single crystals at liquid-helium temperatures are described and analyzed. Using frequency-modulation spectroscopy and precision ratiometric transmission spectroscopy, a satellite hole structure has been observed which varies with position in the inhomogeneous line due to excited-state splittings. Transient effects in the optical absorption indicate that an intermediate state with millisecond lifetimes is involved in hole formation. The persistent holes have been observed to grow as the logarithm of time and the logarithm of burning intensity in certain regimes, and a phenomenological tunneling model has been used to explain the time and intensity dependence. The results suggest that R' centers interact via tunneling and local strains with a quasi-random distribution of nearby traps which may be other color centers in the host material. A linear Stark effect has been observed in agreement with earlier measurements. This work illustrates the power of hole-burning spectroscopy to uncover static and dynamic interactions normally hidden by inhomogeneous broadening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.