Abstract

We measured persistent Na(+) current and membrane properties of bursting-pacemaker and nonbursting inspiratory neurons of the neonatal rat pre-Bötzinger complex (pre-BötC) in brain stem slice preparations with a rhythmically active respiratory network in vitro. In whole-cell recordings, slow voltage ramps (</=100 mV/s) inactivated the fast, spike-generating Na(+) current and yielded N-shaped current-voltage relationships with nonmonotonic, negative-slope regions between -60 and -35 mV when the voltage-sensitive component was isolated. The underlying current was a TTX-sensitive persistent Na(+) current (I(NaP)) since the inward current was present at slow voltage ramp speeds (3.3-100 mV/s) and the current was blocked by 1 microM TTX. We measured the biophysical properties of I(NaP) after subtracting the voltage-insensitive "leak" current (I(Leak)) in the presence of Cd(2+) and in some cases tetraethylammonium (TEA). Peak I(NaP) ranged from -50 to -200 pA at a membrane potential of -30 mV. Decreasing the speed of the voltage ramp caused time-dependent I(NaP) inactivation, but this current was present at ramp speeds as low as 3.3 mV/s. I(NaP) activated at -60 mV and obtained half-maximal activation near -40 mV. The subthreshold voltage dependence and slow inactivation kinetics of I(NaP), which closely resemble those of I(NaP) mathematically modeled as a burst-generation mechanism in pacemaker neurons of the pre-BötC, suggest that I(NaP) predominantly influences bursting dynamics of pre-BötC inspiratory pacemaker neurons in vitro. We also found that the ratio of persistent Na(+) conductance to leak conductance (g(NaP)/g(Leak)) can distinguish the phenotypic subpopulations of bursting pacemaker and nonbursting inspiratory neurons: pacemaker neurons showed g(NaP)/g(Leak) > g(NaP)/g(Leak) in nonpacemaker cells (P < 0.0002). We conclude that I(NaP) is ubiquitously expressed by pre-BötC inspiratory neurons and that bursting pacemaker behavior within the heterogeneous population of inspiratory neurons is achieved with specific ratios of these two conductances, g(NaP) and g(Leak).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call