Abstract

We have identified a TTX-resistant low-threshold persistent inward sodium current in the cerebral giant cells (CGCs) of Lymnaea, an important state-setting modulatory cell type of molluscan feeding networks. This current has slow voltage-dependent activation and de-activation kinetics, ultra-slow inactivation kinetics and fast de-inactivation kinetics. It activates at approximately -90 mV, peaks at approximately -30 mV, reverses at approximately +35 mV and does not show full voltage-dependent inactivation even at positive voltage steps. Lithium-sodium replacement experiments indicate that the persistent sodium current makes a significant contribution to the CGC membrane potential. Injection of cyclic adenosine monophosphate (cAMP) into the CGC cell body produces a large increase in the persistent sodium current that lasts for several hours. cAMP injection also leads to increased bursting, a significant decrease in the resistance and a significant depolarization of the soma membrane, indicating that cAMP-dependent mechanisms induce prolonged neuronal plasticity in the CGCs. Our observations provide the first link between cAMP-mediated modulation of a TTX-resistant persistent sodium current and prolonged neuronal plasticity in an identified modulatory cell type that plays an important role in behavioral state setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.