Abstract
There is a pressing need for durable energy harvesting techniques that are not limited by intermittency, and capable of persistent and continuous operation in a variety of environments.Our laboratory has previously identified ambient thermal fluctuations as potentially abundant, ubiquitous sources of such energy. In this work, we present a mathematical theory for the operation and design of a thermal resonator interfaced with optimized thermal diodes on its external boundaries with the environment. We show that such a configuration is potentially able to produce single polarity temperature difference drastically exceeding that of previously reported thermal resonators by a factor of 5. We further introduce an experimental testbed of mechanical thermal switches capable of mimicking thermal diodes with a possibility to tune thermal rectification in a broad range. The testbed allows us to identify additional design rules for our system dictated by material properties. Lastly, our theory establishes a generic performance metrics over thermal diodes available in the literature. The established framework will help to design novel thermal elements, build efficient thermal harvesting systems, and compose nonlinear thermal circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.