Abstract

Secondary hyperalgesia, an exaggerated response to stimuli applied to undamaged tissue surrounding an injury, is a common consequence of tissue injury and inflammation. It is well established that the etiology of secondary hyperalgesia is sensitization of central neurons but the exact mechanism and its role in certain clinical pain states is unclear. In the present experiments, we studied responses to punctate and non-punctate mechanical stimuli and to heat applied to the plantar aspect of the hindpaw remote to an incision in the gastrocnemius region of the rat hindlimb. Median withdrawal thresholds to von Frey filaments were reduced 2h after incision of skin, fascia and muscle (gastrocnemius incision, n = 9) and remained reduced through postoperative day 6 (p < 0.05 vs sham). Only a transient reduction in withdrawal threshold occurred after incision of skin and fascia (skin incision, n = 10). No enhanced responsiveness to blunt mechanical stimulation or reduction in withdrawal latency to heat was present after gastrocnemius incision (p > 0.05vs sham, n = 9 each group). Reduced withdrawal thresholds were blocked by i.t. administration of morphine and by local anesthetic injection at the test site 2h and 2 days after gastrocnemius incision. These pharmacological data provide evidence that reduced withdrawal thresholds after gastrocnemius incision are nociceptive behaviors indicating persistent secondary hyperalgesia. Because the behaviors have a similar time course to secondary hyperalgesia in postoperative patients, the model will be useful to evaluate the mechanisms for secondary mechanical hyperalgesia after incision, its pharmacological characteristics and its potential role in persistent postoperative pain. Copyright 2002 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Science Ltd. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.