Abstract

Ectopic activity in multiple sclerosis (MS) patients has been traditionally attributed to hyperexcitability of the demyelinated axon segments. Here, we propose that the same outcome may be the result of persistent reflection--the continuous reactivation of the axonal nodes that limit a demyelinated internodal segment. Using computer simulations, we studied the patterns of impulse propagation for a wide range of electrophysiological conditions. In uniformly myelinated fibers, increasing the temperature enabled successful propagation with no blocks in more severe conditions of demyelination. Secondary activations that were originated at the paranodes were formed for temperatures lower than T = 305 K, and at the condition of high sodium channel excitability. Non-sustained and persistent reflections appeared in the case of focally demyelinated fibers, and only within a narrow range of parameters of high temperature and membrane excitability. Persistent reflection reached steady state in ionic currents within 4 ms, and was characterized with a very high activation frequency of 1.504 (+/- 0.039 kHz. We conclude that persistent reflection is a possible mechanism for ectopic activity in MS patients, being more prominent in higher temperatures and severe axonal demyelination. Eliminating these symptoms may be addressed by cooling the body or by applying pharmacological agents to alter excitability properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call