Abstract

Adenosine receptor stimulation and blockade have been shown to modulate a variety of cocaine-related behaviors. These studies identify the direct effects of adenosine receptor stimulation on cocaine seeking during extinction training and the persistent effects on subsequent reinstatement to cocaine seeking. Rats self-administered cocaine on a fixed ratio one schedule in daily sessions over 3 weeks. Following a 1-week withdrawal, the direct effects of adenosine receptor modulation were tested by administering the adenosine A1 receptor agonist, N(6)-cyclopentyladenosine (CPA, 0.03 and 0.1 mg/kg), the adenosine A2A agonist, CGS 21680 (0.03 and 0.1 mg/kg), the presynaptic adenosine A2A receptor antagonist, SCH 442416 (0.3, 1, and 3 mg/kg), or vehicle prior to each of six daily extinction sessions. The persistent effects of adenosine receptor modulation during extinction training were subsequently tested on reinstatement to cocaine seeking induced by cues, cocaine, and the dopamine D2 receptor agonist, quinpirole. All doses of CPA and CGS 21680 impaired initial extinction responding; however, only CPA treatment during extinction produced persistent impairment in subsequent cocaine- and quinpirole-induced seeking. Dissociating CPA treatment from extinction did not alter extinction responding or subsequent reinstatement. Administration of SCH 442416 had no direct effects on extinction responding but produced dose-dependent persistent impairment of cocaine- and quinpirole-induced seeking. These findings demonstrate that adenosine A1 or A2A receptor stimulation directly impair extinction responding. Interestingly, adenosine A1 receptor stimulation or presynaptic adenosine A2A receptor blockade during extinction produces lasting changes in relapse susceptibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call