Abstract

We investigate the time evolution of the mean location and variance of a charged particle subject to random collisions that are Poisson distributed. The particle moves on a plane and is subject to a magnetic field applied perpendicular to the plane, so it is constrained to move in circles in the absence of collisions. We develop a procedure that yields analytic expressions of the mean and variance. These results are valid for arbitrary times after the start of the walk, including early on when, on average, less than one collision is expected. As an example of their applicability, we use these expressions to model experimental results and simulations of suprathermal ions propagating in a turbulent plasma in TORPEX (the TORoidal Plasma EXperiment).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.