Abstract

Long-term potentiation (LTP) of synaptic transmission in the hippocampus is a robust form of synaptic plasticity that may contribute to mammalian memory formation. A variety of pharmacological evidence suggests that persistent kinase activation contributes to the maintenance of LTP. To determine whether persistent activation of protein kinases was associated with the maintenance phase of LTP, protein kinase activity was measured in control and LTP samples using exogenous protein kinase substrates in an in vitro assay of homogenates of the CA1 region of rat hippocampal slices. After LTP, protein kinase activity was persistently increased, and the induction of this effect was blocked by the N-methyl-D-aspartate receptor antagonist DL-2-amino-5-phosphonovaleric acid. The increased protein kinase activity was found to be significantly attenuated by PKC(19-36), a selective peptide inhibitor of protein kinase C. Thus, LTP is associated with an N-methyl-D-aspartate receptor-mediated generation of a persistently activated form of protein kinase C. These data lend strong support to the model that persistent protein kinase activation contributes to the maintenance of LTP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call