Abstract

ZnO and ZnO-dye hybrid films prepared by electrochemical deposition are highly porous if fabricated in the presence of structure directing agents and they can easily be sensitized by various molecules. If the material is sensitized with the appropriate molecules, it becomes interesting for various sensor applications, i.e., gas sensors and biosensors, or as an electrode material for solar energy conversion in dye sensitized solar cells. In the present work, the focus is on dye sensitized ZnO as a model system. The long term photoconductivity transients have been investigated in such kind of material. Upon excitation with different wavelengths, the conductivity increases already under sub-band-gap illumination due to widely distributed trap states within the band gap. The slow photoconductivity transients follow a stretched exponential law if the illumination is rapidly changing in a dry atmosphere. The underlying mechanism of persistent photoconductivity can be attributed to a lattice relaxation process of surface states, immediately after electrons have been photoexcited into distributed surface states located inside the band gap of the ZnO thin film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.