Abstract
Molecular descriptors are essential to quantitative structure activity/property relationship (QSAR/QSPR) models and machine learning models. Here we propose persistent path-spectral (PPS), PPS-based molecular descriptors, and PPS-based machine learning model for the prediction of the protein-ligand binding affinity, for the first time. For the graph, simplicial complex, and hypergraph representation of molecular structures and interactions, the path-Laplacian can be constructed and the derived path-spectral naturally gives a quantitative description of molecules. Further, by introducing the filtration process of the representation, the persistent path-spectral can be derived, which gives a multiscale characterization of molecules. Molecular descriptors from the persistent path-spectral attributes then are combined with the machine learning model, in particular, the gradient boosting tree, to form our PPS-ML model. We test our model on three most commonly used data sets, i.e., PDBbind-v2007, PDBbind-v2013, and PDBbind-v2016, and our model can achieve competitive results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.