Abstract

Lesions of peripheral nerves lead to pain, hyperalgesia, and psychological comorbidities. However, the relationship between mood disorders and neuropathic pain is unclear, as well as the underlying mechanisms related to these disorders. Therefore, we investigated if nerve injury induces depression, anxiety, and cognitive impairment and if there were changes in cytokines, growth factors, and glial cell activation in cortical sites involved in processing pain and mood in animals with nerve injury. Nerve injury was induced by partial sciatic nerve ligation (PSNL) in male Swiss mice and compared to sham-operated animals. Nociceptive behavioral tests to mechanical and thermal (heat and cold) stimuli confirmed the development of hyperalgesia. We further examined mood disorders and memory behaviors. We show nerve injury induces a decrease in mechanical withdrawal thresholds and thermal latency to heat and cold. We also show that nerve injury causes depressive-like and anxiety-like behaviors as well as impairment in short-term memory in mice. There were increases in proinflammatory cytokines as well as Brain-Derived Neurotrophic Factor (BDNF) in the injured nerve. In the spinal cord, there were increases in both pro and anti-inflammatory cytokines, as well as of BDNF and Nerve Growth Factor (NGF). Further, in our data was a decrease in the density of microglia and astrocytes in the hippocampus and increased microglial density in the prefrontal cortex, areas associated with neuropathic pain conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call