Abstract

The specialization of the semiconductor industry has resulted in a global Integrated Circuit (IC) supply chain that is susceptible to hardware Trojans – malicious circuitry that is embedded into the chip during the design cycle. This nefarious attack could compromise the missioncritical systems which implement these devices. While a trusted domestic IC supply chain exists with resources such as the Trusted Foundry Program, it’s highly desirable to utilize the high yield, fast turn-around time, low cost, and leading-edge technology of the global IC supply chain. Research into the verification of hardware trust has made significant progress in recent years but is still far from a single, comprehensive solution. Most proposed solutions are one-time implementable methods that attempt to detect hardware Trojans during the verification stage of the IC development process. While this is a desirable solution, it’s not realistic given the current limitations of hardware Trojan detection techniques. We propose a more comprehensive solution that involves the persistent verification of hardware trust in the field, in addition to several one-time methods implemented during IC verification. We define a persistent verification framework that involves the use of a few ICs from a secure process flow to persistently monitor and verify the operation of several untrusted ICs from the global supply chain. This allows the system integrator to realize the benefits of the global IC supply chain while maintaining the integrity of the system. We develop a system monitor which filters the IO of untrusted digital ICs for a set of patterns, which we refer to as digital signal signatures, to verify the operation of the devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.