Abstract

Basic circuit analysis is a core course in most of the undergraduate engineering programs and is the prerequisite course for many other courses in the undergraduate electrical engineering program. Students enter into engineering schools with varying knowledge of the concepts of basic circuit analysis depending on whether they come from high school, CEGEP, or a technical college, etc. Many students from all engineering majors struggle to learn the concepts taught in these courses which creates challenges for both faculty members and students in courses when for which basic circuit analysis is a pre-requisite course. There is more research done in understanding the conceptual knowledge of physics of electricity and electric (and electronic) components and improving the instruction of basic circuit analysis concepts, but not enough work is done to understand the mistakes undergraduate electrical engineering students continue to make course after course. For this study, the authors look at the persistent problems in learning circuit analysis techniques by looking at students’ use of these techniques in three core courses in electrical engineering program namely electronics 1, electronics 2 and electromagnetic waves and guiding structures. Students’ responses to exam questions that specifically expected students to use these concepts are analyzed. The objective of the study was to analyze whether the understanding of the application of circuit analysis techniques get better as students continue to use these concepts in more courses and applications, or the problems persist. Results show that the students persistently make mistakes in applying KVL and KCL equations, nodal analysis, superposition theorem, voltage divider, and mesh analysis. Additionally, the results reveal that students persistently make mistakes in questions that involve the concepts of load and no load, open circuit, series components, parallel components, voltage drop across the current source, and voltage gain. It is noted that the mistakes made by students do not get much better as they continue taking more courses. The results of this study are important from many aspects. They are helpful to understand the continuing struggles of students and so are helpful to design pedagogy and assessment in a way that these concepts can be well explained. Thorough understanding of the concepts in a course that is as important as basic circuit analysis is important to achieve many engineering education goals including student retention, motivation, innovation, and inclusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call