Abstract

Time-resolved fluorescence technique can reduce the short-lived background luminescence and auto-fluorescence interference from cells and tissues by exerting the delay time between pulsed excitation light and signal acquisition. Here, we prepared persistent luminescence nanoparticles (PLNPs) to design a universal time-resolved fluorescence resonance energy transfer (TR-FRET) platform for biosensing, lifetime imaging of cell apoptosis and in situ lifetime quantification of intracellular caspase-3. Three kinds of PLNPs-based nanoprobes are assembled by covalently binding dye-labeled peptides or DNA to carboxyl-functionalized PLNPs for the efficient detection of caspase-3, microRNA and protein. The peptides-functionalized nanoprobe is also employed for fluorescence lifetime imaging to monitor cell apoptosis, which shows a dependence of cellular fluorescence lifetime on caspase-3 activity and thus leads to an in situ quantification method. This work provides a proof-of-concept for PLNPs-based TR-FRET analysis and demonstrates its potential in exploring dynamical information of life process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call