Abstract

The role of immune or infective triggers in the pathogenesis of Chronic Fatigue Syndrome (CFS) is not yet fully understood. Barriers to obtaining immune measures at baseline (i.e., before the trigger) in CFS and post-infective fatigue model cohorts have prevented the study of pre-existing immune dysfunction and subsequent immune changes in response to the trigger.This study presents interferon-alpha (IFN-α)-induced persistent fatigue as a model of CFS. IFN-α, which is used in the treatment of chronic Hepatitis C Virus (HCV) infection, induces a persistent fatigue in some individuals, which does not abate post-treatment, that is, once there is no longer immune activation. This model allows for the assessment of patients before and during exposure to the immune trigger, and afterwards when the original trigger is no longer present.Fifty-five patients undergoing IFN-α treatment for chronic HCV were assessed at baseline, during the 6–12 months of IFN-α treatment, and at six-months post-treatment. Measures of fatigue, cytokines and kynurenine pathway metabolites were obtained. Fifty-four CFS patients and 57 healthy volunteers completed the same measures at a one-off assessment, which were compared with post-treatment follow-up measures from the HCV patients.Eighteen patients undergoing IFN-α treatment (33%) were subsequently defined as having ‘persistent fatigue’ (the proposed model for CFS), if their levels of fatigue were higher six-months post-treatment than at baseline; the other 67% were considered ‘resolved fatigue’. Patients who went on to develop persistent fatigue experienced a greater increase in fatigue symptoms over the first four weeks of IFN-α, compared with patients who did not (Δ Treatment Week (TW)-0 vs. TW4; PF: 7.1 ± 1.5 vs. RF: 4.0 ± 0.8, p = 0.046). Moreover, there was a trend towards increased baseline interleukin (IL)-6, and significantly higher baseline IL-10 levels, as well as higher levels of these cytokines in response to IFN-α treatment, alongside concurrent increases in fatigue. Levels increased to more than double those of the other patients by Treatment Week (TW)4 (p = 0.011 for IL-6 and p = 0.001 for IL-10). There was no evidence of an association between persistent fatigue and peripheral inflammation six-months post-treatment, nor did we observe peripheral inflammation in the CFS cohort. While there were changes in kynurenine metabolites in response to IFN-α, there was no association with persistent fatigue. CFS patients had lower levels of the ratio of kynurenine to tryptophan and 3-hydroxykynurenine than controls.Future studies are needed to elucidate the mechanisms behind the initial exaggerated response of the immune system in those who go on to experience persistent fatigue even if the immune trigger is no longer present, and the change from acute to chronic fatigue in the absence of continued peripheral immune activation.

Highlights

  • There is some evidence implicating the immune system in the pathogenesis of Chronic Fatigue Syndrome (CFS), but the exact role of immune mechanisms in this condition, especially at its onset, have yet to be established

  • There was a significant time X group interaction (F (2.58, 113.43) = 3.02, p = 0.040) driven by persistent fatigue (PF) subjects experiencing a greater increase in symptoms over the first four weeks compared with resolved fatigue’ (RF) patients (Δ TW0 vs. 4; PF: 7.1±1.5 vs. RF: 4.0±0.8, p = 0.046), with a statistical trend towards higher fatigue in the PF subjects at TW4 (19.5±1.2 vs. 16.7±0.8, p = 0.057)

  • They had a greater increase in fatigue by the end of treatment, relative to baseline (Δ TW0 vs. End = PF: 10.1±1.8 vs. RF: 5.1±1.1, p = 0.016), and fatigue scores were significantly higher in PF versus RF patients at the end of treatment (22.5±1.5 vs. 17.9±1.3, p = 0.035)

Read more

Summary

Introduction

There is some evidence implicating the immune system in the pathogenesis of Chronic Fatigue Syndrome (CFS), but the exact role of immune mechanisms in this condition, especially at its onset, have yet to be established. Some recent studies have observed raised inflammatory markers in CFS patients, both in serum and cerebrospinal fluid (Maes et al, 2012; Silverman et al, 2010). A recent study has found that 17 cytokines in the serum, mainly proinflammatory, correlate with Myalgic Encephalomyelitis (ME)/CFS severity (Montoya et al, 2017). A meta-analysis of findings published up to 2003 found no consistent evidence for immune dysfunction (Lyall et al, 2003); and a more recent meta-analysis found that, of the 77 markers measured, only transforming growth-factor beta (TGF-β) was consistently raised (Blundell et al, 2015), a finding confirmed by the aforementioned study by Montoya et al, (2017)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call