Abstract

Attributable to the Montreal Protocol, the most successful environmental treaty ever, human-made ozone-depleting substances are declining and the stratospheric Antarctic ozone layer is recovering. However, the Antarctic ozone hole continues to occur every year, with the severity of ozone loss strongly modulated by meteorological conditions. In late November and early December 2020, we measured at the northern tip of the Antarctic Peninsula the highest ultraviolet (UV) irradiances recorded in the Antarctic continent in more than two decades. On Dec. 2nd, the noon-time UV index on King George Island peaked at 14.3, very close to the largest UV index ever recorded in the continent. On Dec. 3rd, the erythemal daily dose at the same site was among the highest on Earth, only comparable to those recorded at high altitude sites in the Atacama Desert, near the Tropic of Capricorn. Here we show that, despite the Antarctic ozone recovery observed in early spring, the conditions that favor these extreme surface UV events persist in late spring, when the biologically effective UV radiation is more consequential. These conditions include long-lasting ozone holes (attributable to the polar vortex dynamics) that often bring ozone-depleted air over the Antarctic Peninsula in late spring. The fact that these conditions have been occurring at about the same frequency during the last two decades explains the persistence of extreme surface UV events in Antarctica.

Highlights

  • Attributable to the Montreal Protocol, the most successful environmental treaty ever, human-made ozone-depleting substances are declining and the stratospheric Antarctic ozone layer is recovering

  • Four times within the period Nov. 24th–Dec. 4th, the daily maximum UV index was higher than 11, reaching values more than twice as large as those previously measured at the same location (Fig. 1a)

  • The extreme surface UV measured on the Antarctic Peninsula in late 2020 underlines the fact that, the Antarctic ozone is recovering in early spring, low total ozone column (TOC) values persist in late spring

Read more

Summary

Introduction

Attributable to the Montreal Protocol, the most successful environmental treaty ever, human-made ozone-depleting substances are declining and the stratospheric Antarctic ozone layer is recovering. Despite the Antarctic ozone recovery observed in early spring, the conditions that favor these extreme surface UV events persist in late spring, when the biologically effective UV radiation is more consequential. These conditions include long-lasting ozone holes (attributable to the polar vortex dynamics) that often bring ozone-depleted air over the Antarctic Peninsula in late spring. The fact that these conditions have been occurring at about the same frequency during the last two decades explains the persistence of extreme surface UV events in Antarctica. The Antarctic ozone abundance is controlled by the strength and duration of the polar vortex, which in turn depend on the planetary wave a­ ctivity[6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call