Abstract

Inflammatory cytokines and infiltrating T cells are readily detected in herpes simplex virus (HSV) infected mouse cornea and trigeminal ganglia (TG) during the acute phase of infection, and certain cytokines continue to be expressed at lower levels in infected TG during the subsequent latent phase. Recent results have shown that HSV infection activates Toll-like receptor signaling. Thus, we hypothesized that chemokines may be broadly expressed at both primary sites and latent sites of HSV infection for prolonged periods of time. Real-time reverse transcriptase-polymrease chain reaction (RT-PCR) to quantify expression levels of transcripts encoding chemokines and their receptors in cornea and TG following corneal infection. RNAs encoding the inflammatory-type chemokine receptors CCR1, CCR2, CCR5, and CXCR3, which are highly expressed on activated T cells, macrophages and most immature dendritic cells (DC), and the more broadly expressed CCR7, were highly expressed and strongly induced in infected cornea and TG at 3 and 10 days postinfection (dpi). Elevated levels of these RNAs persisted in both cornea and TG during the latent phase at 30 dpi. RNAs for the broadly expressed CXCR4 receptor was induced at 30 dpi but less so at 3 and 10 dpi in both cornea and TG. Transcripts for CCR3 and CCR6, receptors that are not highly expressed on activated T cells or macrophages, also appeared to be induced during acute and latent phases; however, their very low expression levels were near the limit of our detection. RNAs encoding the CCR1 and CCR5 chemokine ligands MIP-1α, MIP-1β and RANTES, and the CCR2 ligand MCP-1 were also strongly induced and persisted in cornea and TG during the latent phase. These and other recent results argue that HSV antigens or DNA can stimulate expression of chemokines, perhaps through activation of Toll-like receptors, for long periods of time at both primary and latent sites of HSV infection. These chemokines recruit activated T cells and other immune cells, including DC, that express chemokine receptors to primary and secondary sites of infection. Prolonged activation of chemokine expression could provide mechanistic explanations for certain aspects of HSV biology and pathogenesis.

Highlights

  • Acute viral infections are usually cleared from the primary site of infection by the host immune response [1], but some viruses can persist at other sites in a latent form

  • Expression of interferon γ (IFN-γ) and TNF-α transcripts persists in trigeminal ganglion (TG) latently infected with Herpes simplex virus (HSV) strains unable to replicate in neurons, indicating that neither HSV replication nor ability to reactivate are required for persistent cytokine gene expression [3]

  • While CD4+ T cells appear to be important in immunized mice for protection against challenge virus infection [12], CD8+ T cells appear to be important for establishment of latent infection in mice [7]; and CD8+ T cells specific for HSV persist in TG for long periods of time [8]

Read more

Summary

Introduction

Acute viral infections are usually cleared from the primary site of infection by the host immune response [1], but some viruses can persist at other sites in a latent form. Herpes simplex virus (HSV), for example, causes a primary infection at a mucosal site, which is cleared within 7–10 days by the host immune response. Latent infection is established by 30 days postinfection (dpi) because no infectious virus can be detected in homogenates of TG tissue at that time. Low levels of lytic transcripts can be detected in ganglia latently infected with HSV [5]. While CD4+ T cells appear to be important in immunized mice for protection against challenge virus infection [12], CD8+ T cells appear to be important for establishment of latent infection in mice [7]; and CD8+ T cells specific for HSV persist in TG for long periods of time [8]. There is evidence for long-term immune surveillance in the ganglion during latent infection by HSV

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call