Abstract

Inspired by the superrotation of the Earth's solid core, we investigate the dynamics of a free-rotating body as it interacts with the large-scale circulation (LSC) of the Rayleigh-Bénard thermal convection in a cylindrical container. A surprising and persistent corotation of both the free body and the LSC emerges, breaking the axial symmetry of the system. The corotational speed increases monotonically with the intensity of thermal convection, measured by the Rayleigh number Ra, which is proportional to the temperature difference between the heated bottom and cooled top. The rotational direction occasionally and spontaneously reverses, occurring more frequently at higher Ra. The reversal events follow a Poisson process; it is feasible that flow fluctuations randomly interrupt and reestablish the rotation-sustaining mechanism. This corotation is powered by thermal convection alone and promoted by the addition of a free body, enriching the classical dynamical system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.