Abstract

Emerging studies have identified the critical roles of tissue-resident memory CD8+ T (TRM) and B (BRM) cells in the protection against mucosal viral infections, but the underlying mechanisms regulating robust development of TRM and BRM cells remain incompletely understood. We have recently shown that tissue-resident helper CD4+ T (TRH) cells, developed following influenza virus infection, function to sustain the optimal maintenance of TRM and BRM cells at the mucosal surface. In this study, we have explored the cellular and molecular cues modulating lung TRH persistence after influenza infection in C57BL/6 mice. We found that TRH cells were colocalized in tertiary lymphoid structures (TLSs) with local B cells. Abolishing TLSs or the depletion of B cells impaired lung TRH cell numbers. Of note, we found that persistent TCR signaling is needed for the maintenance of TRH cells after the clearance of infectious influenza virus. Furthermore, selective ablation of B cell-derived MHC class II resulted in partial reduction of lung TRH cell number after influenza infection. Our findings suggest that the interaction between lung-resident TRH cells and B cells, along with persistent Ag stimulation, is required to maintain TRH cells after respiratory viral infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.