Abstract

The hypothesis that cellular hypertrophy in congestive heart failure (CHF) modulates mechanosensitive (ie, swelling- or stretch-activated) channels was tested. Digital video microscopy and amphotericin-perforated-patch voltage clamp were used to measure cell volume and ion currents in ventricular myocytes isolated from normal dogs and dogs with rapid ventricular pacing-induced CHF. In normal myocytes, osmotic swelling in 0.9x to 0.6x isosmotic solution (296 mOsm/L) was required to elicit an inwardly rectifying swelling-activated cation current (I(Cir,swell)) that reversed near -60 mV and was inhibited by 10 micromol/L Gd3+, a mechanosensitive channel blocker. Block of I(Cir,swell) by Gd3+ simultaneously reduced the volume of normal cells in hyposmotic solutions by up to approximately 10%, but Gd3+ had no effect on volume in isosmotic solution. In contrast, I(Cir,swell) was persistently activated under isosmotic conditions in CHF myocytes, and Gd3+ decreased cell volume by approximately 8%. Osmotic shrinkage in 1.1x to 1.5x isosmotic solution inhibited both I(Cir,swell) and Gd3+-induced cell shrinkage in CHF cells, whereas osmotic swelling only slightly increased I(Cir,swell). The K0.5 and Hill coefficient for Gd3+ block of I(Cir,swell) and Gd3+-induced cell shrinkage were estimated as approximately 2.0 micromol/L and approximately 1.9, respectively, for both normal and CHF cells. In both groups, the effects of Gd3+ on current and volume were blocked by replacing bath Na+ and K+ and were linearly related with varying Gd3+ concentration and the degree of cell swelling. CHF thus altered the set point for and caused persistent activation of I(Cir,swell). This current may contribute to dysrhythmias, hypertrophy, and altered contractile function in CHF and may be a novel target for therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.