Abstract

Long-enduring quasi-periodic oscilations (1.5s) superimposed upon a solar burst have for the first time been observed simultaneously at two different mm-wavelengths (22 GHz and 44 GHz). The oscillations were present throughout the burst duration (about 10 min), and were delayed at 44 GHz with respect to 22 GHz by 0.3 s. The relative amplitude of the oscillation was of about 20% at 44 GHz and of about 5% at 22 GHz. Interferometer measurements at 10.6 GHz indicated the burst source position stable within 1 arc sec. An He i D3 line flare showed two persistent small spots separated by about 10 arc sec. The 22/44 GHz burst position corresponds well with the location of the He i D3 spots. The oscillations display features which distinguish them from ultrafast time structures found in other bursts. One possible interpretation is a modulation of the synchrotron emission of trapped electrons by a variable magnetic field on a double burst source, optically thin at 44 GHz and with optical thickness ⪞ 0.3 at 22 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call