Abstract

Loops in surfaces associated with topological features such as handles and tunnels are important entities in many applications including surface parameterization, feature identification, and topological simplification. Recently, a persistent homology based algorithm has been proposed to compute them. The algorithm has several advantages including its simplicity, combinatorial nature and independence from computing other extra structures. In this paper, we propose changes to this loop computation algorithm based on some novel observations. These changes reduce the computation time of the algorithm dramatically. In particular, our experimental results show that the suggested changes achieve considerable speed up for large data sets without sacrificing loop qualities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.