Abstract

The present study investigates the persistence of summer sea surface temperature anomalies (SSTAs) in the midlatitude North Pacific and its interdecadal variability. Summer SSTAs can persist for a long time (approximately 8–14 months) around the Kuroshio Extension (KE) region. This long persistence may be strongly related to atmospheric forcing because the mixed layer is too shallow in the summer to be influenced by the anomalies at depths in the ocean. Changes in atmospheric circulation, latent heat flux, and longwave radiation flux all contribute to the long persistence of summer SSTAs. Among these factors, the longwave radiation flux has a dominant influence. The effects of sensible heat flux and shortwave radiation flux anomalies are not significant. The persistence of summer SSTAs displays pronounced interdecadal variability around the KE region, and the variability is very weak during 1950–82 but becomes stronger during 1983–2016. The changes in atmospheric circulation, latent heat flux, and longwave radiation flux are also responsible for this interdecadal variability because their forcings on the summer SSTAs are sustained for much longer after 1982.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call