Abstract
Nous nous intéressons à la marche de Sinai $(S_{n})_{n\in\mathbb{N}}$. Nous prouvons que la probabilité annealed que $\sum_{k=0}^{n}f(S_{k})$ soit strictement positive pour tout $n\in[1,N]$ est égale à $1/(\log N)^{(3-\sqrt{5})/2+o(1)}$, pour une large classe de fonctions $f$, et en particulier pour $f(x)=x$. L’exposant de persistance $\frac{3-\sqrt{5}}{2}$ est d’abord apparu dans un article non rigoureux de Le Doussal, Monthus et Fischer, avec des motivations venant de la physique. La preuve est basée sur des techniques de localisation pour la marche de Sinai et utilise des résultats de Cheliotis sur les changements de signe des fonds de vallées d’un mouvement Brownien indexé par $\mathbb{R}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.