Abstract

BackgroundSARS-CoV-2 stability and infection persistence has been studied on different surfaces, but scarce data exist related to personal protective equipment (PPE), moreover using realist viral loads for infection. Due to the importance for adequate PPE management to avoid risk of virus infection, RNA stability was evaluated on PPE.MethodsPersistence of SARS-CoV-2 infection and detection of genomic RNA in PPE (gowns and face masks) were determined by in-vitro assays and RT-qPCR, respectively. Samples were infected with a clinical sample positive for SARS-CoV-2 (Clin-Inf), and with a heat-inactivated SARS-CoV-2 strain sample (Str-Inf) as a control.ResultsPPE samples infected with Clin-Inf were positive for the 3 viral genes on gowns up to 5 days post-infection, whereas these overall genes were detected up to 30 days in the case of face masks. However, gowns and FFP2 masks samples contaminated with Clin-Inf showed a cytopathic effect over VERO cells up to 5–7 days post-infection.ConclusionsSARS-CoV-2 RNA was detected on different PPE materials for 5 to 30 days, but PPE contaminated with the virus was infectious up to 5–7 days. These findings demonstrate the need to improve PPE management and to formulate strategies to introduce viricidal compounds in PPE fabrics.

Highlights

  • SARS-CoV-2 stability and infection persistence has been studied on different surfaces, but scarce data exist related to personal protective equipment (PPE), using realist viral loads for infection

  • In PPE samples infected with heat-inactivated SARSCoV-2 strain (Str-Inf ), the amplification of viral genes was detected in face masks for 15 days and for 20 days in gowns samples

  • PPE samples infected with a clinical sample positive for SARS-CoV-2 (Clin-Inf ) showed that detection of N protein, S protein and Orf genes was observed up to 5 days post-infection in gown samples, whereas these overall genes were detected for 30 days after infection in the case of face masks, showing a decreasing viral load during monitoring period (Table 2)

Read more

Summary

Introduction

SARS-CoV-2 stability and infection persistence has been studied on different surfaces, but scarce data exist related to personal protective equipment (PPE), using realist viral loads for infection. Several studies have been developed to assess the stability of SARS-CoV-2 on different surfaces to stablish the real risk of virus spread through fomites and airborne transmission (on surfaces or items). (2020), assessed the persistence of SARS-CoV-2 on different surfaces, and concluded that it was more stable on plastic and stainless steel than on copper and cardboard (up to 72 h for a ­104 viral titer initial infection) [2]. Others tested a similar human coronavirus, SARS-CoV-1 (P9) and HCoV (229E strains), reporting viral survival of 4–5 days at room temperature, on different surfaces such as aluminum, plastic, metal, wood, or paper using a viral load of ­105 [3, 4].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.