Abstract

We prove new results on the persistence of Hamiltonian relative equilibria with generic velocity–momentum pairs in the case of non-compact non-free group actions and taking into account time reversibility. Our starting point is a relative equilibrium which is non-degenerate modulo isotropy which, in the case of a generic momentum implies persistence of the given relative equilibrium to all nearby momentum values with the same isotropy. We show that the analysis of the persistence problem involves the study of a singular algebraic variety which is determined solely by the symmetry group of the problem. We present persistence results for relative equilibria with velocity–momentum pairs which are regular points of this variety and give sufficient conditions for a velocity–momentum pair to be regular. We apply our results to relative equilibria of Euclidean equivariant systems, including models of rigid bodies in fluids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.