Abstract
We have used a new assay for pyrimidine dimers to obtain evidence regarding the mechanism of post-replication repair of ultraviolet light-induced damage in excision-deficient ( uvr) mutants of Escherichia coli. Our data indicate that dimers are gradually removed from the irradiated DNA under conditions permitting post-replication repair. Concomitantly, dimers appear in daughter strands synthesized after irradiation. The daughter strands initially contain gaps. During post-replication repair the gaps are filled and the originally discontinuous DNA is joined into long molecules resembling those observed in unirradiated control cells. Density transfer experiments reported by other investigators have provided evidence that the gap-filling involves exchanges between irradiated parental DNA and unirradiated daughter strands. The results of our experiments are in accord with this possibility and suggest that some dimers are included in the exchanged regions. Our data imply that intact, dimer-free DNA molecules are not necessarily generated by gap-filling and may not appear in uvr cells until several hours after u.v. irradiation. Instead, dimers may be gradually diluted among successive generations of DNA molecules synthesized after irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.