Abstract

A linear regression was calculated between the peak one-hour ozone concentration for a given day and forced vital capacity (FVC), forced expiratory volume in one second (FEV), and peak expiratory flow rate (PEFR) as determined the same day from spirograms for each of the 39 children tested on six or more days. All mean slopes were negative, except for FVC in boys, indicating a general tendency for decreased function with increasing ozone concentration. In another analysis, a summary weighted correlation coefficient between peak ozone level and each pulmonary function parameter was calculated for each of 49 children seen on four or more days. As in the regression analysis, decrements in PEFR were significantly correlated with the ozone exposure. Analysis of residuals from the regression lines provide evidence for responses of greater potential significance to the future health of the children. They indicate a different kind of response, i.e., a persistent decrement in function lasting for as much as a week after the end of a smog period of about four days' duration. The persistent effects associated with ozone could have been due to acidic sulfates as well as, or in addition to, ozone. 10 references, 2 figures, 2 tables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call