Abstract
Introduction: Saccular aneurysms are thought to have a worse prognosis than fusiform aneurysms in humans, due to hemodynamic reasons. However, data comparing hemodynamic and biology in saccular and fusiform aneurysms are lacking. The main objective was to evaluate the impact of aneurysm morphology on intra-luminal thrombus (ILT) formation and activity. Methods: Forty Lewis rats were randomly divided into 2 groups of 20: “saccular” (Group A) and “fusiform” (Group B) aneurysms. Decellularized thoracic aortas from guinea pigs were xenografted to create saccular or fusiform aneurysms. Final imaging evaluation of the aneurysms was carried out during the third week, by quantitative Doppler ultrasound and magnetic resonance imaging. Assays of myeloperoxidase (MPO), platelet factor 4 (PF4), advanced oxidation protein products (AOPPs) iron and matrix metallopeptidase-9 (MMP-9) were performed as biological criteria. Results: Quantitatively, saccular aneurysms are characterized by a more thicker ILT, lower inflow velocities and more important relative backflow velocities as compared to fusiform aneurysms. Compared to fusiform, saccular aneurysms released significantly more MPO (p = 0.004), PF4 (p = 0.02), AOPPs (p < 0.002), iron (p < 0.0001) and MMP-9 (p < 0.04). Conclusion: Experimental saccular and fusiform aneurysms show differential specific hemodynamics, which seem to impact the histology and the biology of the ILT in each type of aneurysm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.