Abstract

Predators have the potential to limit the spread of pathogens not only by selecting infected prey but also by shaping prey demographics. We tested this idea with an epidemiological experiment in which we simulated variable levels of size-selective predation on zooplankton hosts and monitored the persistence of host and parasite populations. In the absence of simulated predation, the virulent protozoan Caullerya mesnili frequently drove its host Daphnia galeata to extinction. Uninfected control populations showed lower extinction rates and higher average densities than infected populations in the absence of simulated predation (all of the latter went extinct or remained infected). With a weak removal rate of the largest hosts, the proportion of populations in which the parasite drove the host to extinction decreased, while the number of populations in which the host persisted and the parasite went extinct increased. Host-parasite coexistence was also observed in some cases. With intermediate levels of removal, most of the parasite populations went extinct, while the host populations persisted. With an even higher removal rate, Daphnia were driven to extinction as well. Thus, variation in one factor, size-selective mortality, resulted in four different patterns of population dynamics. Our results highlight the potential role of predation in shaping the epidemiology and community structure of host-parasite systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call