Abstract
The propagation of antibiotic resistance genes (ARGs) represents a global threat to both human health and food security. Assessment of ARG reservoirs and persistence is therefore critical for devising and evaluating strategies to mitigate ARG propagation. This study developed a novel, internal standard method to extract extracellular DNA (eDNA) and intracellular DNA (iDNA) from water and sediments, and applied it to determine the partitioning of ARGs in the Haihe River basin in China, which drains an area of intensive antibiotic use. The concentration of eDNA was higher than iDNA in sediment samples, likely due to the enhanced persistence of eDNA when associated with clay particles and organic matter. Concentrations of sul1, sul2, tetW, and tetT antibiotic resistance genes were significantly higher in sediment than in water, and were present at higher concentrations as eDNA than as iDNA in sediment. Whereas ARGs (frequently located on plasmid DNA) were detected for over 20 weeks, chromosomally encoded 16S rRNA genes were undetectable after 8 weeks, suggesting higher persistence of plasmid-borne ARGs in river sediment. Transformation of indigenous bacteria with added extracellular ARG (i.e., kanamycin resistance genes) was also observed. Therefore, this study shows that extracellular DNA in sediment is a major ARG reservoir that could facilitate antibiotic resistance propagation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.