Abstract

Simple SummaryDrosophila suzukii is an invasive pest species that feeds on yeast-laden fruits and is attracted to fermentation products. In nature, numerous yeast species are associated with Drosophila suzukii. Yeasts constitute a food source and produce volatile compounds attractive to the fly. The production of attractants and chemical compounds that stimulate feeding by Drosophila suzukii make the use of yeasts promising for the development of attract-and-kill formulations. In the present work, the efficacy and the persistence over a one-week period of a yeast-based attract-and-kill formulation was evaluated treating grape plants in a greenhouse. The efficacy was assessed by measuring the survival and oviposition rate of Drosophila suzukii. The concentrations or presence/absence of potential feeding stimulants and attractants were assessed by quantitative measurement of carbohydrates, sugar alcohols, amino acids, and volatile compounds. Results show that the formulation was still effective and that some of the chemical compounds monitored were still present on the surface of treated leaves one week after treatment, though changes in the chemical profiles were observed over this period.The production of phagostimulant and attractive volatile organic compounds (VOCs) by yeasts can be exploited to improve the efficacy of attract-and-kill formulations against the spotted wing drosophila (SWD). This study evaluated the persistence over one week of a yeast-based formulation under greenhouse conditions. Potted grape plants were treated with: (i) potato dextrose broth (PDB), (ii) PDB containing spinosad (PDB + S), and (iii) H. uvarum fermentation broth grown on PDB containing spinosad (H. u. + S). Laboratory trials were performed to determine the survival and the oviposition rate of SWD after exposure to treated leaves. Ion-exchange chromatography was performed to measure carbohydrates, sugar alcohols, and organic acids on leaf surfaces, while amino acids were assessed through liquid chromatography–mass-spectrometry. Additionally, the VOCs released by plants treated with H.uvarum were collected via closed-loop-stripping analysis and compared to those emitted by untreated leaves. A higher mortality was observed for adult SWDs in contact with H. uvarum containing spinosad compared to PDB containing spinosad. Generally, a decrease in the amounts of non-volatile compounds was observed over time, though numerous nutrients were still present one week after treatment. The application of the yeast-based formulation induced the emission of VOCs by the treated leaves. The concentration of 2-phenylethanol, one of the main VOCs emitted by yeasts, decreased over time. These findings describe the presence of potential phagostimulants and compounds attractive to SWD in a yeast-based attract-and-kill formulation and demonstrate the efficacy of the formulation over one week.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.