Abstract

The structures, vibrational spectra, and electronic properties of copper hydroxide hydrates CuOH+(H2O)3-7 were investigated with quantum chemistry computations. As a follow-up to a previous analysis of CuOH+(H2O)0-2, this investigation examined the progression as the square-planar metal coordination environment was filled and as solvation shells expanded. Four-, five-, and six-coordinate structures were found to be low-energy isomers. The delocalized radical character, which was discovered in the small clusters, was found to persist upon continued hydration, although the hydrogen-bonded water network in the larger clusters was found to play a more significant role in accommodating this spin. Partial charges indicated that the electronic structure includes more Cu2+···OH- character than was observed in smaller clusters, but this structure remains decidedly mixed with Cu+···OH· configurations and yields roughly half-oxidation of the water network in the absence of any electrochemical potential. Computed vibrational spectra for n = 3 showed congruence with spectra from recent predissociation spectroscopy experiments, provided that the role of the D2 tag was taken into account. Spectra for n = 4-7 were predicted to exhibit features that are reflective of both the mixed electronic character and proton-/hydrogen-shuttling motifs within the hydrogen-bonded water network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.