Abstract

Pyriproxyfen is a pyridine-based insecticide used for pest control in fruits and vegetables. It is a potent endocrine disruptor and hormone imitator. Considering its potential hazards to non-target organisms and the associated environment, a lab study was conducted for assessing persistence, mobility in sandy loam soil and associated risk to various non-target organisms and soil enzymes. Pyriproxyfen formulation was applied at 0.05 and 0.10 µg g-1 soil which was equivalent to recommended and double dose of 100 and 200 g a.i. ha-1, respectively. Three methods namely QuEChERS, liquid-solid extraction (LSE) and matrix solid phase dispersion (MSPD) were compared for achieving efficient sample preparation. MSPD was applied for final analysis as it gave better recoveries (94.2 to 104.3%) over other methods with limits of detection and quantification (LOD and LOQ) as 0.0001 and 0.0005 µg g-1, respectively. Dissipation followed first order kinetics with half-lives of 7.6 and 8.2 days in both doses but residues retained over 45 days in soil. Leaching studies conducted at 50 and 100 µg of pyriproxyfen showed extremely poor leaching potential. Retention of over 90% residues in top 5 cm soil surface indicated minimal threat of ground and surface water contamination. Toxicological study demonstrated very different behaviour toward different enzymatic activities. Pyriproxyfen was relatively toxic for alkaline phosphatase and fluorescein diacetate hydrolase enzymes. β-glucosidase activity was triggered whereas arylsulfatase activity remained unaffected. Unacceptable risk to soil invertebrates at double dose application clearly indicated that its longer persistence in soil could be toxic to other non-target organisms and needs further investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.