Abstract

The zero-temperature Glauber dynamics is used to investigate the persistence probability P(t) in the Potts model with Q = 3, 4, 5, 7, 9, 12, 24, 64, 128, 256, 512, 1024, 4096, 16 384, …, 230 states on directed and undirected Barabási–Albert networks and Erdös–Rényi (ER) random graphs. In this model, it is found that P(t) decays exponentially to zero in short times for directed and undirected ER random graphs. For directed and undirected BA networks, in contrast it decays exponentially to a constant value for long times, i.e., P(∞) is different from zero for all Q values (here studied) from Q = 3, 4, 5, …, 230; this shows "blocking" for all these Q values. Except that for Q = 230 in the undirected case P(t) tends exponentially to zero; this could be just a finite-size effect since in the other "blocking" cases you may have only a few unchanged spins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.