Abstract
Persistence approximation property was introduced by Herve Oyono-Oyono and Guoliang Yu. This property provides a geometric obstruction to Baum-Connes conjecture. In this paper, the authors mainly discuss the persistence approximation property for maximal Roe algebras. They show that persistence approximation property of maximal Roe algebras follows from maximal coarse Baum-Connes conjecture. In particular, let X be a discrete metric space with bounded geometry, assume that X admits a fibred coarse embedding into Hilbert space and X is coarsely uniformly contractible, then C*max(X) has persistence approximation property. The authors also give an application of the quantitative K-theory to the maximal coarse Baum-Connes conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.