Abstract

The development of new antibiotics with low environmental persistence is of utmost importance in contrasting phenomena of antibiotic resistance. In this study, the persistence of two newly synthesized monocyclic β-lactam antibiotics: (2R)-1-(methylthio)-4-oxoazetidin-2-yl acetate, P1, and (2R,3R)-3-((1R)-1-(tert-butyldimethylsilanyloxy)ethyl)-1-(methylthio)-4-oxoazetidin-2-yl acetate, P2, has been investigated in water in the pH range 3–9 and in two (calcareous and forest) soils, then compared to amoxicillin, a β-lactam antibiotic used in human and veterinary medicine. P1 and P2 persistence in water was lower than that of amoxicillin with only a few exceptions. P1 hydrolysis was catalyzed at an acidic pH whereas P2 hydrolysis takes place at both acidic and alkaline pH values. P1 persistence in soils depended mainly on their water potential (t1/2: 35.0–70.7d at wilting point; <1d at field capacity) whereas for P2 it was shorter and unaffected by soil water content (t1/2 0.13–2.5d). Several degradation products were detected in soils at both water potentials, deriving partly from hydrolytic pathways and partly from microbial transformation. The higher LogKow value for P2 compared with P1 seemingly confers P2 with high permeability to microbial membranes regardless of soil water content. P1 and P2 persistence in soils at wilting point was shorter than that of amoxicillin, whereas it had the same extent at field capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.