Abstract
With the extensive growth in information, text classification as one of the text mining methods, plays a vital role in organizing and management information. Most text classification methods represent a documents collection as a Bag of Words (BOW) model and then use the histogram of words as the classification features. But in this way, the number of features is very large; therefore performing text classification faces serious computational cost problems. Moreover, the BOW representation is unable to recognize semantic relations between words. Recently, topic-model approaches have been successfully applied for text classification to overcome the problems of BOW. Our main goal in this paper is to investigate the possibility of applying the topic models for Persian text classification and compare between the feature processing techniques of BOW and the topic model based approaches. The experimental results show that the topic-model approach for representing the Persian documents yields at least 9% accuracy improvement compared to the BOW based algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.