Abstract

The perpendicular anisotropy Spin-Transfer Torque Random Access Memory (P-STT-RAM) is considered to be a promising candidate for high-density memories. Many distinct advantages of Perpendicular Magnetic Tunnel Junction (P-MTJ) compared to the conventional in-plane MTJ (I-MTJ) such as lower switching current, circular cell shape that facilitates manufacturability in smaller technology nodes, large thermal stability, smaller cell size, and lower dipole field interaction between adjacent cells make it a promising candidate as a universal memory. However, for small MTJ cell sizes, the perpendicular technology requires new materials with high polarization and low damping factor as well as low resistance area product of a P-MTJ in order to avoid a high write voltage as technology is scaled down. A new graphene-based STT-RAM cell for 8 nm technology node that uses high perpendicular magnetic anisotropy cobalt/nickel (Co/Ni) multilayer as magnetic layers is proposed in this paper. The proposed junction benefits from enough Tunneling Magnetoresistance Ratio (TMR), low resistance area product, low write voltage, and low power consumption that make it suitable for 8 nm technology node.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.