Abstract

A steady-state electrical current flowing in a magnetic heterostructure can exert a torque on the magnetization, and provides a means to control magnetization states and dynamics in spintronics structures. However, some components of the torque are difficult to measure and to calculate. We have determined the perpendicular spin torque in MgO magnetic tunnel junctions by measuring their lowest ferromagnetic resonance frequency and find that it decreases linearly with increasing bias voltage. Micromagnetic modeling shows that this decrease is caused by the perpendicular component of spin torque. We obtain a quantitative value for the perpendicular spin torque effective field as a function of bias voltage, and show that this effective field is a linear function in bias voltage and approximately equal in magnitude to the in-plane spin torque effective field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call