Abstract

The impact of a non-magnetic Ta spacer layer on the perpendicular magnetic anisotropy (PMA) of composite magnetic structures constituted by ultra-thin Co/Pd multilayers (MLs) and MgO/CoFeB was studied. Composite structures lacking a Ta layer present in-plane magnetic anisotropy. The strong perpendicular anisotropy observed in sole Co/Pd MLs is not sufficient to pull the magnetic moment out of the film plane, not even after annealing at 300 or 350 °C. PMA with squareness values close to unity and annealing stability up to 350 °C is observed after the insertion of an ultra-thin Ta layer. Our study demonstrates that Ta layer is essential for obtaining perpendicular magnetic axis in MgO/CoFeB/Ta/[Co/Pd]6. The exchange coupling between the MgO/CoFeB bilayer and the Co/Pd MLs is ferromagnetic with sharp switching characteristics. Perpendicular composite structures with sharp magnetization reversal and annealing stability are relevant in perpendicular CoFeB-based magnetic tunnel junctions for the development of gigabit-scale nonvolatile memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.