Abstract

We consider ion heating by turbulent Alfven waves (AWs) and kinetic Alfven waves (KAWs) with perpendicular wavelengths comparable to the ion gyroradius and frequencies smaller than the ion cyclotron frequency. When the turbulence amplitude exceeds a certain threshold, an ion's orbit becomes chaotic. The ion then interacts stochastically with the time-varying electrostatic potential, and the ion's energy undergoes a random walk. Using phenomenological arguments, we derive an analytic expression for the rates at which different ion species are heated, which we test by simulating test particles interacting with a spectrum of randomly phased AWs and KAWs. We find that the stochastic heating rate depends sensitively on the quantity epsilon = dv/vperp, where vperp is the component of the ion velocity perpendicular to the background magnetic field B0, and dv (dB) is the rms amplitude of the velocity (magnetic-field) fluctuations at the gyroradius scale. In the case of thermal protons, when epsilon << eps1, where eps1 is a constant, a proton's magnetic moment is nearly conserved and stochastic heating is extremely weak. However, when epsilon > eps1, the proton heating rate exceeds the cascade power that would be present in strong balanced KAW turbulence with the same value of dv, and magnetic-moment conservation is violated. For the random-phase waves in our test-particle simulations, eps1 is approximately 0.2. For protons in low-beta plasmas, epsilon is approximately dB/B0 divided by the square root of beta, and epsilon can exceed eps1 even when dB/B0 << eps1. At comparable temperatures, alpha particles and minor ions have larger values of epsilon than protons and are heated more efficiently as a result. We discuss the implications of our results for ion heating in coronal holes and the solar wind.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.